Streptococcus pneumoniae DNA Initiates Type I Interferon Signaling in the Respiratory Tract
نویسندگان
چکیده
UNLABELLED The mucosal epithelium is the initial target for respiratory pathogens of all types. While type I interferon (IFN) signaling is traditionally associated with antiviral immunity, we demonstrate that the extracellular bacterial pathogen Streptococcus pneumoniae activates the type I IFN cascade in airway epithelial and dendritic cells. This response is dependent upon the pore-forming toxin pneumolysin. Pneumococcal DNA activates IFN-β expression through a DAI/STING/TBK1/IRF3 cascade. Tlr4(-/-), Myd88(-/-), Trif(-/-), and Nod2(-/-) mutant mice had no impairment of type I IFN signaling. Induction of type I IFN signaling contributes to the eradication of pneumococcal carriage, as IFN-α/β receptor null mice had significantly increased nasal colonization with S. pneumoniae compared with that of wild-type mice. These studies suggest that the type I IFN cascade is a central component of the mucosal response to airway bacterial pathogens and is responsive to bacterial pathogen-associated molecular patterns that are capable of accessing intracellular receptors. IMPORTANCE The bacterium Streptococcus pneumoniae is a leading cause of bacterial pneumonia, leading to upwards of one million deaths a year worldwide and significant economic burden. Although it is known that antibody is critical for efficient phagocytosis, it is not known how this pathogen is sensed by the mucosal epithelium. We demonstrate that this extracellular pathogen activates mucosal signaling typically activated by viral pathogens via the pneumolysin pore to activate intracellular receptors and the type I interferon (IFN) cascade. Mice lacking the receptor to type I IFNs have a reduced ability to clear S. pneumoniae, suggesting that the type I IFN cascade is central to the mucosal clearance of this important pathogen.
منابع مشابه
باکتری های پاتوژن جدا شده از نمونه بیماران مشکوک به عفونت ریوی
The lower respiratory tract is vulnerable to infection by a wide variety of microorganisms, because it is one of the organ systems which communicate directly with the environments. Although viruses and fungi can cause lower respiratory tract infections, bacteria are the dominant pathogens. Among bacteria the common causes of lower respiratory tract infection is Streptococcus pneumoniae, Mycopla...
متن کاملSynergistic stimulation of type I interferons during influenza virus coinfection promotes Streptococcus pneumoniae colonization in mice.
Pneumococcal infection of the respiratory tract is often secondary to recent influenza virus infection and accounts for much of the morbidity and mortality during seasonal and pandemic influenza. Here, we show that coinfection of the upper respiratory tract of mice with influenza virus and pneumococcus leads to synergistic stimulation of type I IFNs and that this impairs the recruitment of macr...
متن کاملHalothane modulates the type i interferon response to influenza and minimizes the risk of secondary bacterial pneumonia through maintenance of neutrophil recruitment in an animal model.
BACKGROUND To minimize the risk of pneumonia, many anesthesiologists delay anesthesia-requiring procedures when patients exhibit signs of viral upper respiratory tract infection. Postinfluenza secondary bacterial pneumonias (SBPs) are a major cause of morbidity and mortality. An increased host susceptibility to SBP postinfluenza has been attributed to physical damage to the pulmonary epithelium...
متن کاملIncreased protection against pneumococcal disease by mucosal administration of conjugate vaccine plus interleukin-12.
Streptococcus pneumoniae is a common cause of respiratory tract infections, its main entry route being the nasal mucosa. The recent development of pneumococcal polysaccharide conjugate vaccines has led to a dramatic improvement in protection against invasive disease in infants and children, but these vaccines have been found to be only 50 to 60% protective against bacterial carriage. In this st...
متن کاملType I interferon induction during influenza virus infection increases susceptibility to secondary Streptococcus pneumoniae infection by negative regulation of γδ T cells.
The majority of deaths following influenza virus infection result from secondary bacterial superinfection, most commonly caused by Streptococcus pneumoniae. Several models have been proposed to explain how primary respiratory viral infections exacerbate secondary bacterial disease, but the mechanistic explanations have been contradictory. In this study, mice were infected with S. pneumoniae at ...
متن کامل